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Precise Design of a Bandpass Filter Using
High-Q Dielectric Ring Resonators

YOSHIO KOBAYASHI, MEMBER, IEEE, AND MASAHIKO MINEGISHI

Abstract — A precise design is presented for a bandpass filter con-

structed by placing TEOI~ dielectric ring resonators coaxially in a TEol

cutoff circular waveguide. On the basis of a rigorous analysis by the

mode- matching technique, the interresonator coupling coefficients are

determined accurately from the calculation of two resonant frequencies ~k

aod ~;P when the structurally symmetric plane is short- and open-circuited.
For the TE018 ring resonator,the resonantfrequencyfO, the temperature
coefficient r,, the unloaded Q ( QU), and the other resonances are also

calculated accurately in a similar way. From the calculations, the optimum

dimensions are determined to obtain the maximum Qti, as ~ = ~, /~0 is

kept constant, where J is the next higher resonant frequencfi the ring

resonator using low-loss ceramics (c, = 24.3, tan 8 = 5 X 10– 5) has Q ~ =

16800” at 12 C,HZ and ~ = 0,1 ~ 0.5 ppm/° C, while the rod one has

Q,, =14 700. A four-stage Chebyshev filter having ripple of 0.04 dB and

equiripple bandwidth of 27.3 MHz at ~. =11,958 GHz is fabricated using

these resonator% the measured frequency responses agree well with theory.

The insertion loss is 0.9 dB, which corresponds to QU = 9800.

I. INTRODUCTION

A BAN DPASS filter constructed by placing TEO1a

mode dielectric rod resonators coaxially in a TEOI

cutoff circular waveguide has been presented by Harrison

[1]. In this design, the approximate but useful formula for

an interresonator coupling coefficient presented by Cohn

[2] has been used. For a similar filter structure, a more

precise design has been performed on the basis of a

rigorous analysis by the mode-matching technique [3].

Recently, dielectric resonators with high unloaded Q(QU)

have been needed to decrease the insertion loss of filters.

TE018 ring resonators have a possibility of realizing higher
Q,, values than the rod-shaped ones.

This paper discusses a precise design of a bandpass filter

constructed using these ring resonators. The resonant

frequency, its temperature coefficient, the QU value, the

other resonances, and the interresonator coupling coeffi-

cient are analyzed rigorously by the same technique as

used in the rod case. A precise design of the high-QU ring

resonators and the interresonator coupling coefficients is

performed from these calculations, and a four-stage

Chebyshev filter is fabricated.

II. ANALYSIS

A. Interresonator Coupling Coefficient

Fig. 1 shows the geometry of the coupled dielectric ring

resonators to be analyzed, and the cylindrical coordinate

system r, /3, z. Two dielectric ring resonators having rela-
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tive permittivity e,, diameter D, inner diameter DX, and

length L are supported with dielectric rings of relative

permittivity c~ coaxially in a cutoff circular waveguide of

diameter d. The space between the rings is 2M. The

relative permeability in each medium is p, =1. The con-

ductor and dielectric are supposed to be lossless first.

The interresonator coupling coefficient k of this con-

figuration is obtained from

(1)

where f,h and fOP are the resonant frequencies when the

structurally symmetric plane (T plane in Fig. 1) is short-

and open-circuited, respectively [3]. The error of the sec-

ond equation in (1) is below 0.01 percent when k <2 x

10-2. Thus, the derivation of k is reduced to the problem

of calculating the resonant frequencies, and is performed

by the mode-matching technique described below. Accord-

ing to the structural symmetry, only the region z > – (L/2

+ M) is considered, and this is divided into five homoge-

neous media I to V. The quantities in the media are

designated by subscripts 1 to 5, respectively. The axial

component of the magnetic Hertz vector mm in each

medium is expanded in eigenmodes which satisfy the

boundary conditions on the conductor surface and the T

plane, i.e.,

q=l

{“‘F715 = 5 EqJo(k4qr) ‘1nhaq(2 + L/2+ Al)

)

(2)
q=l cosha~(z + L/2+ M)

where

(3)

0018 -9480/87/1200-1156$01 .00 01987 IEEE



KOIIAYASHI AND MI NI.GISH1: PRI;CISE DESIGN OF BANDPASS FILTER 1157

Rq@
ort Short-or open-circuit plane

-

: 7/7;: ~=1 L%?&l

Dielectric rin resonator circular waveguide

Fig. 1. Coupled dielectric rmg resonators.

Also, the upper and lower expressions in the braces { ‘j

correspond to the short- and open-circuited T-plane modes,

respectively. J,l ( x ) and Nu ( x ) are the Bessel functions of

the first and second’ kinds. 1.(.x) and K.(x) are the

modified Bessel functions of the first and second kinds. A

time factor e ‘or (U= 2nfO) is tacitly assumed, and ~0 is

the resonant frequency. The quantities kO and c are the

wavenumber and the light velocity in vacuum. xlP, Bp, B;,

Cl,, Dq, Eq, and ~p are expansion coeffici~nts to be

determined from the boundary conditions. For the present

case, the TEOI mode in the circular waveguide is supposed

to be the evanescent mode, i.e.,

d < ~jil, jll = 3.832 (4)
?rfo

so that a~ is real for any q.

The field components in each medium are given by

substituting (2) into the following Maxwell’s equations:

d %7n,i d L7m, &rMr
H== k:~,,,, + — H,= E@= jupo~

az2 at’l?z

(5)

where i=l,2,. . . ,5, and k, is the wavenumber of the i th

medium.

In the media I, II, and III, at first, the requirements that

the p th components of H= and EO be continuous at the

interfaces r = R. and r = R lead to

x [Z@o(up)qu;)- $wjNlo(qj]

x [UpNo(up)T1(oj) –ujNIIIup)To(oj)] (6)

where

U,, = k2PR

D,
uvP=k~PR.y=—u

Dp

In the above, a set of the values up, Uxp, u;, and w; is the

pth scdution for (6), where up< up+ ~ (p= 1,2, .0 .). Then,

imposing the boundary conditions that H, and EO be

continuous at z = L/2 and z = – L/2 and applying the

orthogonalit y of the Bessel functions, we obtain homoge-

neous equations for the expansion coefficients. The reso-

nant frequencies are determined by the condition that the

determinant of the coefficient matrix vanish, i.e.,

det~~(~o; ~,,~l,~s, d, D, DX, L, M)=O (8)

where elements of the N x N square matrix (p, q =

1,2,. . . , N/2) are given by

and also

JR,,, = “rT1(k~pr)J1(kdqr) dr
R

AP ~:p Jo(u,p) +( Bj/Bp)No(~.~p)—.. ———
B,,, W1;2 Io(wj]

Cp u: Jo(up)+ (B; /Bp)Ivo( up)
—.= ——.
B/, U;2 TO(U; )

B; Jo( uxp )

[

Il(w; ) Jl(%p)

BP=– ( ‘) - uxpJo(~..p)%( u.yr) ‘j~o wp 1
/[~l(w; ) _ NI ( Uxp) 1 (10)

W;IO(W; ) U.xpNo( U..p) “

In the practical calculations, N is chosen to be a value for

which the solution converges to the desired accuracy.

B. Resonant Frequencies for a Single Resonator

Putting M ❑ = cc in (8), we can calculate resonant fre-

quenc~es for a single resonator. In this case, elements of

the N X N square matrix (p, q =1,2, ” . . . N) are given by

(Pp BPL _l
H

P.q
= Tpq — tan —

a,, )2“
(11)

\. /
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C. Temperature Coefficient of the Resonant Frequenc,v

The temperature coefficient of the resonant frequency r,

can be expressed as follows [4]:

Tf=A,7r +A3T3+(AD +Ax+AL)Ta+Ac7c

where

A f. Ac, Acj

7[= fOAT
~r.——..— ~3. —

<PAT C3AT

AD AD, AL Ad

‘“=== DXAT=LAT ‘C= dAT

c, Afo E3 AfO D AfO
A,=——

f, Ac.
A3=— —

f, Ac, ‘D=~AD

.

(12)

DX A f. L AfO d AfO

“ = ~ ADX “=~AL
A,=i=. (13)

In the above, T-,and 73 are the temperature coefficients of

c, and C3, and Ta and TC are the coefficients of thermal

linear expansion of the dielectric and conductor, respec-

tively. Also, the constants A,, As, A ~, AX, A=, and A,

can be determined accurately by calculating the small

resonant frequency shifts AfO caused by the small changes

AC), AC3, AD, ADX, AL, or Ad, respectively.

D. Unloaded Q

The unloaded Q(QU) of the TE018 mode can be ex-

pressed as follows [5]:

l/Q,, =1/Q~ + l/Q~~ +l/QC (14)

where

–1 1 –1 1 –1 d
Qd=— —

2A. tan8
Qd, =——.—

2A3 tan&
Q,=—

2AC ~

(15)

and

8,= (nfoptioo) ‘1’2 ii= rJ/rJo U. = 58x106 [S/m].

(16)

In the above, Qd, Qd3, and QC are due to the ring,

support, and conductor losses, respectively. The quantities

tan 6 and tan 83 are the loss tangents of the dielectric for

the ring and support, respectively, 8, is the skin depth of

the conductor, u is the conductivity, 6 is the relative

conductivity, and rrO is the conductivity of the interna-
tional standard annealed copper.

III. DESIGN OF TEOla DIELECTRIC RING

REsONATOR

TE018 dielectric ring resonators used in this filter struc-

ture were fabricated from the low-loss ceramics

Ba(SnMgTa)03 (~,= 24.3, tand = 5 X 10-5 at 12 GHz;

Murata Mfg. Co., Ltd.), polystyrene foam supports (c ~ =

1.031, tan 83 = 4 X 10- 5), and copper-plated brass cylinders

(ii = 0.9). High-Q design of these resonators were per-

formed at f.= 11.958 GHz, as described below.

0.5
t

s:2.3’3j t X=f,a, I tsx=o, j
t“

1.2 2.0 2.81 2 3 40,2 0,3 0.4 05

s=dl D X=( DIL)2 SX=DXID

Fig 2 Mode charts for a dielectric rmg resonator placed coaxially in a

cutoff circular waveguide in the case of c, = 24

TABLE I
CAI.CtrI.AT~D Q,, VALUES FOR THE DIELECTRIC RING AND ROD
RESONATORS WITH ~ =1.14 WHEN f. =11,958 GHz, c, = 243,

TAN8=5X 10-5, E3=1,031, TAN83=4X 10–5, AND F= 0.9

L

Qd Qd, Qc Qu

Rlt]g”) 20,790 1,020,000 96,700 16,800

Rod “2 20,530 1,740,000 52,800 14,700

*lD = 4,91 mm, D, =1,47 mm, ~= 3.61 mm, d=ll.73 mm

*2D = 5.25 mm, D, = O, L = 2.98 mm, d = 9.98 mm.

Define the resonant frequency ratio ~ by ~ = fr/fo,

where f. and f, are the resonant frequencies for the TE018

mode and the next higher frequency mode. For a dielectric

rod resonator (D, = O), initially, optimum dimension ratios

S = d/D and X = (D/L) 2 were calculated for obtaining

the maximum value of Fr(F,~=). The design process is the

same as that described in [6]. The result is F, ~~x = 1.14

when S = 1.9 and X = 3.1. For the ring resonator, the

optimum values of S, S,. = DX/D, and X were calculated

for obtaining the maximum QU value, where F,= 1.14 and

~,= 11.958 GHz were kept constant. The result is S= 2.39,

SX = 0.30, and X=1.85. Fig. 2 shows mode charts calcu-

lated around these optimum values indicated by arrows.

Table I shows the QU values calculated for these reso-

nators. The ring resonator realizes higher Q ~ than that of

the rod case. The development of lower loss material will

increase the Q ~ difference between the ring and rod reso-

nators. Furthermore, the Q. value of the ring resonator is

1.7 times higher than the value QU = 9840 calculated for an

EH118 dielectric rod resonator [7].

The ~f value for the ring resonator calculated from (12)
is

T, = —0.481T, —0.0123T3 –0.963Ta —0.0950TC

= 0.1 +0.5 ppm/°C

where T,= – 24~ 0.3 ppm/°C, Tg= – 8.4+ ().5 ppm/° C,

T,, =10+ 0.5 ppm/°C, and rC= 20+0.03 ppm/°C. The

coefficient ~f mainly depends on the terms r. and T., while
the ~<effect on Tf is only – 1.9 ppmi”c because of energy

concentration into the ring. Also, the measured result is

r, = –0.5 +0.1 ppm\°C.
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Fig, 3. Calculated and measured results of ~,~, ,j&, and k versus 2 M

for coupled TE018 ring resonators.

IV. INTERRESONATOR COUPLING COEFFICIENT

For coupled ring resonators with the same dimensions

as those described above, the calculated and measured

results of ~,~, ~OP, and k are shown in Fig. 3. These

measured values agree with the theoretical curves to within

0.1, 0.1, and 1 percent, respectively. The difference be-

tween the center frequency ~OL= ~m” and ~0 is within

0.02 percent when k < 0.01; it can be neglected in filter

design. To compare these k values with the rod case, the k

values for the rod ( DX = O) were calculated using the same

mode-matching technique as the present one [3] and Cohn’s

formula [1], [2], where the rod length was shortened so as

to make the resonant frequency equal to the ring case.

These results are summarized in Table II. The k values for
the ring are 4 percent smaller than those for the rod. The

results by Cohn’s formula are 13 to 19 percent smaller

than the ones by the present theory, as k increases; the

discrepancy is approximately equal to the case of c,= 97.6

given in [2].

TABLE H
COMPARISON OF THREE CASES OF k VALUES CALCULATED WHEN

~)= 11.958 GHz. E, = 24.3, AND C, =1.031
—
.—

2Pi(mm)

——
0

2,

4

6

8

10

RING .! I ROD ‘2
I

Present Theory

1.74 X1 O-I

4.51 X1 O-2

1 .24x10-2

3.63x 10-3

1 .08x10-3

3.22x 10-4

9.62x 10-5

1.84x IO”’

4.71 X1 O-2

I. 29x10-2

3.77 X1 O-3

1.12 X1 O-3

3.33 X1 O-4

9.96x 10-5

S.8. Cohn

I.41X1 O-’

3 .82x10-2

1.1 OX1O-2

3.26x 10-3

0.97XI0-3

2.90x10-4

8.68X1O-512
——

*1,9=4,91 ~Tlm, D =l,47mm, L=3,61 mm, d=ll.73mm.

*~~=4,91 mm, D:=(), L=3.42mm, d=ll.73 mm.

Filter WR-90 rectangular Qe adjustment screw
\Id;

Resor{ator Die[ect;lcrin~ Cou~llng
support resonator aperture

I 1

41.3
I

X -X’ plane

Fig, 4. Cross-sectional view of a four-stage dielectric ring resonator
filter,

V. DESIGN OF THE FILTER

Fig. 4 shows the cross-sectional view of a four-stage

Chebyshev bandpass filter actually constructed. Three brass

rings iire precisely machined with the desired dimensions,

copper-plated, and mounted in a filter housing. This struc-

ture ensures precise spacing of resonators and eliminates

the need for k adjustment screws. The first and fourth

resonators are each excited by a coupling aperture located

at the end of a WR-90 rectangular waveguide. The external

Q(Qe) values at the input and output ports are adjusted
with conducting screws mounted in the waveguide flanges

[8]. The resonant frequencies for the resonators are each

adjusted with tuning screws.

In consideration of the application to a Japanese broad-

casting satellite [9], the specifications of this filter are as

follows: center frequency ~. of 11.958 GHz (ch. 13), 15 dB
bandwidth of 49.7 MHz, equiripple bandwidth of 27.3

MHz, and ripple of 0.04 dB. We obtain the values klq =

k~z = 2.14 x10-3, kz~ =1.64 x10-3, and Q,= 395 [10], and

the values of 2 M are determined from Fig. 3. The size of

this fillter is also indicated in Fig. 4.
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Fig. 6. Wide-band response of the filter,

The transmission and reflection responses are shown in

Fig. 5. The agreement between experiment and theory is

good. The measured value QU=14000 gives a midband

insertion loss of 0.64 dB [10], while the measured insertion

loss of 0.9 dB corresponds to QU = 9800. This QU degrada-

tion is due to the conductor loss of the coupling apertures

and tuning screws. The wide-band response measured is

shown in Fig. 6. The resonant modes for the single reso-

nator calculated from Fig. 2 are indicated on the top of the

figure. It is seen that strong couplings between the higher

order modes worsen the spurious characteristics of the

filter.

VI. CONCLUSIONS

For a TEOl& dielectric ring resonator placed coaxially in

a TEOI cutoff circular waveguide, the resonant frequency,

its temperature coefficient, the unloaded Q, the other

resonances, and the interresonator coupling coefficient were

calculated accurately on the basis of a rigorous analysis by

a mode-matching technique. The filter structure presented

allows us to realize precise filter design and ensures ease of

fabrication because of its simple configuration.
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